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Summary

Built on the Sendai Harbor and having started commercial operation on October 1,
2017, the Sendai Power Station (hereinafter referred to as Sendai PS) has become a
major air pollutant emission source which may significantly affect the local residents
and local ecosystem. This study provides a concrete analysis of the effects of Sendai
PS’s operation upon the air quality of surrounding area and on the health of residents.
The effects of the operation and air pollutant emissions of the Sendai PS identified in
the study include: 1) the premature death of approximately 19 people per year (appr.
760 people during 40 years of operation) due to strokes, lung cancer, heart diseases,
respiratory diseases, etc.; 2) cause approximately 1 low birth weight birth per year; 3)
acidic deposition that can adversely affect agricultural products, soil, buildings, etc.;
and 4) fallout of heavy metal compounds such as Mercury, arsenic, Nickel, Chrome,

lead, etc.



1. Introduction

Air pollution is a major environmental and health hazard in the world, and Japan is no
exception. For example, air pollutants such as fine particulates (PM, s etc.) caused the premature
deaths of approximately 30000 people per year' in Japan for year 2015 alone, according to
scientific studies. (Goto et al. 2016; Lancet 2017)

Under such situation, however, Japan is still planning to build a considerable number of coal-
fired thermal power plants. Two major reasons are: 1) the liberalization of the power sector,
started in 2016; and 2) coal being designated as “base load power source” under the Basic Energy
Plan established in 2016. These reasons have led to a number of plans to build coal-fired thermal
power plants in Japan announced since 2012.

Myllyvirta (2016) carried out research on the health effects of building coal thermal power
plants in Japan, analyzing the effects on atmospheric environment and health of plans to build
thermal power plants in Tokyo/Chiba area and Osaka/Hyogo area. For Tokyo/Chiba area, the
analysis results indicated that the health effects of air pollutants, PM, s and nitrogen dioxide (NO),
included about 260 person/year of premature death, and about 30 babies/year of low birthweight.
(For a 40-year operating life of the power plants, a total of 10,400 premature deaths and 1,200
low birthweight births.) Similarly, for Osaka/Hyogo area, the analysis results indicated about
200 person/year of premature death, and about 20 babies/year of low birthweight. (For 40 years
of operation of power plants, total 8000 premature death and total 800 low birthweight.)

This report identifies health effects of Sendai PS operation to neighboring residents, based on
the methodology of Koplitz et al. (2017), as in the case of Myllyvirta (2016). For this purpose,
section 2 discusses methodology, and section 3 describes the analysis result. ~ Section 4 presents

conclusions.

2. Methodology

2.1. Analytical framework
This study consists of 3 steps: 1) air pollution model; 2) relative risks identified by

epidemiological information (relative risks or increase in mortality) %; and 3) identification of

! The absolute number of deaths increased additionally in comparison with the case of no air pollution, also called
excess deaths. The exposure to air pollutants increases the mortality due to specific diseases (such as myocardial
infarction), causing some demise before average life expectancy.

2 Relative risks or risk ratio is the ratio of morbidity risk of the group exposed to risk factors such as air pollutants
compared with the morbidity risk of the non-exposed group. In other words, this indicates “how easy it is to get
diseases when exposed to risk factors in comparison with no exposure (relativity between disease morbidity and
exposure to risk factors)”.  This is an important index in the analysis of epidemiology factors. Using Cohort Study
(analytical epidemiological approach to compare rates targeted diseases incidents between the group exposed to

specific factors and the non-exposure group, by tracking certain period such as 10 years). For example, If the relative



actual effects of Sendai PS operation upon neighbors and ecosystem by estimating the number of

premature deaths through simulation of 3 units of exposed population (Fig. 1).
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Fig. 1 Three (3) units used to calculate premature death by Sendai PS operation and calculation

flow chart

The following describes the details of each unit.

2.2. Air pollution model

Reference: Produced by authors

The following section explains the structural details of the air pollution model used to

simulate the dispersion, deposition and chemical transformation of air pollutants, divided into

four (4) units of 1) calculate the intensity of air pollutant emissions; 2) topographical data

processing; 3) meteorological data processing; and 4) atmospheric dispersion model.

1) Calculating the intensity of air pollutant emissions

The calculation of the intensity (concentration or volume) of air pollutant emissions is based

on the Sendai PS’s publicly disclosed information on the power generation equipment, air

pollutant concentration in flue gas, etc.

risk of specific disease is 1.1for every unit increase of a risk factor (for example, 10 pg/m? increase of PMz s), it

means 10% increase in mortality (number of death per unit population) due to specific disease (for example

myocardial infarction).

Therefore, relative risk can be expressed as the increase ratio of death risks.

please refer to the glossary and explanation at the end of this paper.

For details,



Note that as the inner diameter of the stack was not disclosed, we used 2.75m as a typical size
for coal thermal power stations of similar scale, and we assumed a utilizatin rate of 90% (Table 1
and Table 2).

Table 1 Basic data of power generation equipment at Sendai PS

Stack height (m) Inner diameter of Flue gas speed (m/s) Flue gas temperature
stack (m) K)
80 2.75 21.1 325.15

Reference: Sendai PS’s disclosed data for stack height, flue gas speed and flue gas temperature. Assumption chosen

by authors for inner diameter of stack.

Table 2 Estimated volume of air pollutant emissions from Sendai PS

Name of air SOz NO NO: Dust
pollutants
Emission volume (t) 937 401 21.1 157.68

Reference: Pollution prevention agreement® for SO2 emissions, others estimated by authors’, using disclosed data for

Sendai PS.

In the case of Sendai PS, we assumed that 67% of the dust emitted is airborne particulates
with diameter less than 10pm (PMyo), and 30% of it is PM. s, particles with diameter less than
2.5um. These assumptions were based on the methodology (AP-42) recommended by US
Environmental Protection Agency (EPA). In addition, we assume that the air pollutants
emissions occur uniformly throughout the year. The fraction of dust emissions that is larger than

10 micrometers is modeled with an aerodynamic diameter of 15 micrometers..

2) Topographical data processing

For this we used the World topographical database of Commonwealth Scientific and
Industrial Research Organization. Analysis used a set of multi-layer lattice with grid size of 50
km x 50 km, horizontal resolutions of 30 km, 10 km, and 5 km centered around Sendai PS. The
target area of this analysis including premature deaths was the area of 1500km x 1500km,

including Sendai City and its suburbs.

3 Agreement made between Sendai PS and Miyagi Prefectural Office. It stipulated the air pollutants emissions and
other data, but PMz s was excluded from the subjected regulatory materials.



3) Meteorological data processing

For meteorological data, we used two databases of 1) US National Oceanic and Atmospheric
Administration’s Climate Data Center; and 2) Commonwealth Scientific and Industrial Research
Organization. The latter combined world-wide climate data and high-resolution ground data of
Australian Meteorological Agency. These weather data (wind speed, humidity, temperature,

precipitation, etc. were the input into the air dispersion model described later.

4) Air dispersion model

As air dispersion model, we used ver.7 of CALPUFF model.* CALPUFF model was EPA
recommended model to assess the impacts of air pollutants, and used worldwide due to its well-
established status. As the atmospheric chemical reactions of sulfur oxides (SOx) and nitrogen
oxides (NOx), we used chemical model of CALPUFF model. Atmospheric chemical
parameters (monthly average of ozone and ammonia, etc.) were imported from general chemical
transport model of Geos-Chem. The innermost pollution grid near the source is 500x500m

resolution

2.2. Relative risks from epidemiological studies

As the aforementioned relative risks (increase in death ratio) from exposure to air pollutants,
we used the number from Krewski et al. (2009) and others. (Table-3) These numbers were based
on the US Cancer Association’s epidemiological survey subjecting total 12 million people for 18
years and generally used to calculate the health impacts of air pollutants. Using these numbers,
the premature deaths were calculated on the basis of for Koplitz et al. (2017) for PM, s and WHO
(2013) for NO».  For low birthweight, the calculation was based on Dadvand et al. (2013).

4 CALPUFF model is atmospheric diffusion model which development started in 1980°s.  This easy to use model
have been recommended by US EPA and China’s State Environmental Protection Standard (HJ2.2-2008 ¥ 1% 220 3
M BARSFNU KSR EE)  Japan’s JICA (Japan International Cooperation Agency) expert team used this CALPUFF
model to analyze air pollution situation of China. (JICA Expert Team 2014) For details, please refer to glossary
and explanation attached to this paper.



Table 3 Relative risks used to assess health impacts

Relative risks from
95% Confidence 95% Confidence

10pg/m? increase Median ] . . Reference
) interval (low) interval (high)
in PMas
Cardiac and .
1.128 1.077 1.182 Krewski et al. (2009)

pulmonary diseases

Ischemic  heart

. 1.287 1.177 1.407 Krewski et al. (2009)

diseases

Lung cancer 1.142 1.057 1.234 Krewski et al. (2009)

Low birthweight 1.100 1.030 1.180 Dadvand et al. (2013)
Relative risks due to
10pg/mincrease in
NO2

Deaths of

1.037 (%) 1.021 1.08 WHO (2013)

all causes

*: Relative risks due to 10pg/m? increase in NOzis 1.055 according to WHO (2013). However, we assumed the
duplication of 1/3 of NO2 impacts with PM2 s impacts, so above table showed 14-(0.055 x 2/3)=1.037. As
mentioned in footnote 2, the relative risks of 1.128 for cardio pulmonary diseases in the 10pg/m? increase of PM2 s
means that 10pg/m? increase in PMa s raises mortality of cardio pulmonary diseases by 12.8%.

Reference: Authors preparation

2.3. Exposure population
For the exposure population in the vicinity of the Sendai PS, the world population data base
of US’s NASA Socio Economic Data Application Center NASA-SEDAC).

3. Results

3.1. Increased concentration of air pollutants in the vicinity of the Sendai PS

It was quantitatively clear that air pollutant emissions from Sendai PS raised air pollutants
concentration in Sendai City and its vicinity. (Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6) The
regions with the highest estimates in the levels of SO», NO, and PM> s were Tagajo City, Rifu
City, Shiogama City, Shichigahama City, etc. (Fig. 7)
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Fig. 2 Estimated increase in the yearly average concentration of PM s in the region neighboring
Sendai PS after its operation start

Reference: Authors’ calculation
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Fig. 3 Estimated increase in 24-hour concentration of PM, s in the neighboring areas after
Sendai PS’s operation start

Reference: Authors’ calculation
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Fig. 4 Estimated increase in yearly concentration of NO, in the neighboring area after Sendai
PS’s operation start

Reference: Authors’ calculation



Maximum 24-hour NO2 concentration from Sendal power plant
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Fig. 5 Estimated increase in 24-hour concentration of NO; in the neighboring region after the

start of Sendai PS operation

Reference: Authors’ calculation
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Fig. 6 Estimated increase in 24-hour concentration of SO, in the neighboring areas after the start
of Sendai PS

Reference: Authors’ calculation
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Fig. 7 Regions with higher increase in air pollutants concentration after the start of Sendai PS’s
operation (maximum 24-hour value)

Reference: Authors’ calculation



3.2. Acid substances, fly ash, heavy metals and their fallout to areas neighboring Sendai PS

Sendai PS emits substances that can cause acid rain, as well as fly ash (coal ash), and heavy
metals such as mercury. These materials would be adrift for a certain time period, and then fall
to the ground (Fig. 8, Fig. 9, and Fig. 10). The fallout of acidic materials might lead to the rise
in the production costs of agriculture products because of the needs to use materials to neutralize
fallout to maintain yield. The acid rain would not only reduce the value of real estate, but also
damage culturally important buildings. The areas to receive highest levels acid deposition and
fly ash would be those adjacent to the power station. For those areas with large fallout,
deposition rates might reach 5 kg/ha/year in SO»-equivalent, and 7 kg/ha of fly ash.

Furthermore, mercury fallout quantities from the Sendai PS to the ground can reach 60 mg/ha
per year in Sendai area (Fig. 10) . As Japan plans to construct more coal fired power stations,
how heavy metal emissions from such power stations would impact the environment has already
drawn significant concerns (Goto 2016). When mercury fallout quantities exceed 125mg/ha per
year, fish may accumulate mercury in their bodies to the level unsafe for human consumption
considering the poisoning caused by the mercury emission from coal-fired power plants in the
Great Lakes region in the US (Swain et al. 1992 ; Stamper et al. 2012) .

The current mercury deposition rates estimated by AMAP/UNEP (2015), 150-250mg/ha/year.

already exceed this rate in the Sendai region. A 60mg/ha deposition rate caused by the power

2

plant means a 30% increase in mercury deposition in the most affected areas, over current
background levels, which carries significant risks. While actual mercury uptake and
biomagnification depends very strongly on local chemistry, hydrology and biology, the predicted

mercury deposition rates are certainly a cause for concern and for further study.

Annual total acid deposition from Sendal power plant
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Fig. 8 Estimated acid fallout (deposition) quantities in neighboring areas after the start of Sendai
PS operation (SO, equivalent)

Reference: Authors’ calculation
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Fig. 9 Estimated quantities of fly ash fallout in neighboring areas after the start of

Sendai PS operation
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Fig. 10 Estimated mercury fallout quantities of neighboring areas after the start of Sendai

PS operation

3.3.

Health impacts in the neighboring areas of Sendai PS

Reference: Authors’ calculation

The premature deaths and lower birthweights caused by the exposure to PM, s and NO, due
to the operation of Sendai PS can be calculated using the following formula 1 and 2, with

relative risks shown in Table 3.

Premature deaths = mortality of premature death cause X log (relative risks of premature

death cause) X Year average increase in PM; sconcentration due to Sendai PS operation/10

X population

--- Formula 1

10



Number of low birthweight = occurrence of low birthweight X log (relative risks of low
birthweight) X Year average increase in PM, s concentration due to Sendai PS operation / 10
X population

--- Formula 2

Note: For the mortality of premature death causes (in the case of no new exposure to air
pollutants) and the occurrence rate of low birthweight, which are both the benchmarks of first
items in these formulas, we used the mortality of premature death causes and low birthweight
rates in Japan shown in the database of WHO’s Global Health Estimate (WHO 2015).

The calculation result showed about 19 persons/year premature deaths, and about one
baby/year low birthweight. (Table-4) .  Considering that a coal fired power station generally
operates for 40 years or so, above number will cause about 760 premature deaths and about 40

low birthweight in total.

Table 4 Estimated number of premature deaths etc. due to Sendai PS’s operation

Health impacts (premature Confidence interval
Premature deaths (median)
death cause) (95%)
PMz s: premature death | Lung cancer 1.2 0.5-1.8
Ischemic heart diseases 1.8 1.1-2.6
Myocardial infarction 3.1 2-43
Other cardiovascular
1.8 1.1-2.5
diseases
Chronic obstructive
0.9 0.5-1.2
pulmonary diseases
Other pulmonary diseases 0.3 0.2-04
PM: s: premature death PM: s Total 9.0 5.4-12.7
NOz2: premature death All causes 10.2 4.0-14.7
PM2s and NO2
Total 19.2 9.4-27.3
premature death
Low birthweight 1.1 04-20

Note: Above number was calculated using the relative risks for heart and lung diseases, ischemic heart diseases, and
lung cancer shown in Table-3. For “myocardial infarction”, “other cardiovascular diseases”, “chronic obstructive
pulmonary diseases” and “other pulmonary diseases™, the relative risks of heart and lung diseases were used as
alternatives.

Reference: Authors’ calculation

11



4. Conclusion and Consideration

In this study, we analyzed the impacts of operation of the Sendai PS upon the residents of
neighboring areas and on ecosystems. Sendai PS was built on Sendai Harbor and started its
commercial operation on October 1, 2017. It was determined that the operation of Sendai PS is
causing: 1) the premature deaths of approximately 19 people per year (about 760 persons in total
during 40 years of commercial operation) due to cerebral stroke, lung cancer, heart diseases,
pulmonary diseases, etc.; 2) about 1 baby per year of low birth weight; 3) deposition of acid
substances that adversely affects agricultural products, soil, buildings, etc.; and 4) fallout of heavy
metal compounds, such as mercury, arsenic, nickel, chrome, lead, etc.

For the analysis in this study, we estimated the scale of actual damages using a model. ~Such
analytical approach is used in general to examine the scale of risks and dangers arising from air
pollutants etc., and actually there is no other approach available.

The uncertainties of such estimated values depend on the accuracy of the model and various
input parameters. The atmospheric dispersion model used in this study is the one popularly used
worldwide, with one of the highest credibility recommended by US EPA. For the
epidemiological data, we used the values that we believe accurately reflect prevailing scientific
view among global researchers.

Furthermore, as a large body of epidemiological data and research shows, there can be no
denial that air pollutant emissions from the power plant are causing significant damage to health,
including excess mortality, though there are naturally uncertainties associated with the precise
extent of the damage. In other words, the operation of the Sendai PS does in fact lead to damage
to health, including premature deaths.

Therefore, we must fully realize and take into account the fact that the operation of the Sendai
PS takes place at the price of negative impacts on the health of the residents of Sendai City and

its vicinity.

12



APPENDIX: Glossary and explanation

1. Relative risks

1) Definition

Relative risks are indicated by the ratio of disease risks of a group exposed to risk factor (for
example, PM2.5 as an air pollutant) compared with the disease risks of a group without exposure
(Table 5 and formula 3). Relative risks can be expressed as the ratio, which is called risk ratio.
In other words, relative risks indicate how many times it becomes easier to contract diseases when
exposed to a risk factor, in comparison with non-exposure (or the strength of correlation between
diseases morbidity and exposure to risk factor(s)). Relative risks are important indices in the

epidemiological factor analysis.

Table 5 Relationship between diseases and exposure group

Number of people Total
Factors
w/disease w/o disease
Exposed group A B A+B
Non-exposure group C D C+D

Relative risks = (Morbidity of group exposed to risk factor) / (morbidity of group without
exposure to risk factor)=(A/ A+ B)/(C/C+D)

--- Formula 3

If calculating for mortality rather than morbidity, relative risks are the ratio of fatalities
between exposed group and non-exposed group, indicating the increase of mortality due to
exposure. Therefore, relative risks can be expressed in the increase of mortality, or increase in
death risks. (Formula 4)

Relative risks = (Mortality of group exposed to risk factor) / (mortality of group not exposed to
risk factor)
= Increase in mortality

--- Formula 4

13



The difference between exposed group and non-exposed group can be indicated by the
difference in the risk factor, such as the concentration of air pollutants. Generally speaking,
when the concentration of air pollutants increases by a unit volume (10 pg/m?), relative risks can
be obtained statistically using epidemiological data, such as the change in mortality. These
relative risks can be used to calculate premature deaths due to exposure to air pollutants, such as
the case given below.

The fundamental equation used for projecting increases in health impacts due to increases in air

pollutant concentrations, on the basis of risk ratios, based on Anenberg et al (2010) is:

Ayij = yoi (1 — exp™P1)p;

--- Formula 5

where Ay is the change in mortality, y, is the baseline mortality, p is the population in the
applicable age group, Ax is the change in concentration, i is the specific cause of mortality and
Jj is the country. B is the coefficient in the regression equation of the effect estimate for the

specific mortality cause:

RR = exphX

--- Formula 6

where RR is the risk ratio reported in the original study and AX is the concentration change for

which the risk ratio is reported.

2) Relative risk values for exposure to air pollutants

To identify the actual scale of relative risks for the exposure to PM2.5, there are number of
epidemiological researches in Japan and the world, such as the one led by the Medical Department
of Harvard University and the World Health Organization (WHO). Ueda et al (2016) conducted
meta-analysis (to accumulate and integrate data from multi number of independent
epidemiological studies of the past and systematically analyze using statistical methodology) of
these studies. To be specific, Ueda et al (2016) made queries, using medical and biological
literature database called PubMed, to abstract English epidemiological literature upon the impacts
of long term exposure to atmospheric PM, s to mortality, which were published during the period
of Jan. 1, 1990 to Dec. 31, 2015. They then systematically reviewed the epidemiological
literature to find how long term exposure to risk factor impacts mortality. As a result, they
examined 24 papers that studied the relationship between exposure to PM, 5 and the death of all
causes, summarized the impact assessment methodologies used in each epidemiological study,
and integrated the results of such studies in the relationship between PM: s exposure to and deaths,

using meta-analysis. The result of such meta-analysis showed relative risks of deaths for 10

14



pg/m3 increase in PM2.5 concentration was 1.07 (with 95% confidence range of 1.04-1.09), and

almost all studies clearly indicated the positive correlation between PM2.5 and deaths.

3) Recent studies of relative risks for PM2 s etc.

Di et al. (2017) is the most recent and biggest epidemiological research on premature death
by air pollutants, especially PM»s. In this study, researchers at the Public Health Department of
Harvard University in the US conducted the cohort survey, which would be described later,
subjecting all beneficiaries (60,925,443 persons) of continental US Medicare (US’s medical
insurance for elderlies) for the period of 2000 to 2012, and conducted the follow-up study of
46,031,521 person/year. Di et al. (2017) also used a verified forecast model to estimate annual
average quantities of ozone and PM, s, fine particulates, based on the zip codes (postal number)
of home addresses of those people subjected to the survey. When estimating the mortality risks
of exposure to these two air pollutants, they used Cox Proportional Hazard Model®, which was
determined by demographic properties and qualifications to receive Medicaid (health insurance
for low income families in the US), and regional level covariates, and estimated the increase in
relative risks for 10pg/m? increase of PM. s, and 10 ppb increase of ozone.

The result showed that for 10pg/ m® increase of PM»s, and 10 ppb increase of ozone, the
mortality of all causes increases by 7.3% (7.1 to 7.5 for 95% confidence range), and 1.1% (1.0 to
1.2 in 95% confidence range), respectively. (In terms of relative risks, 1.073 and 1.011,
respectively.) When exposures were limited to less than 12pg/m?®/person/per year in the case of
PM: 5, and to less than 50 ppb in the case of ozone, the increase in mortality were 13.6% (13.1 to
14.1 with 95% confidence range) and 1.0% (0.9 to 1.1with 95%confidence range.)

In the case of PMa s, male, African American, and those qualified to receive Medicaid had
higher relative risks than others. Moreover, there was clear proof that those qualified to receive
Medicaid would have adverse effects from exposures to PMa, s and ozone at the concentration
levels less than current environmental standards in US. Such effects were most significant
among self-identified minorities and low income people.

From those results, the authors of this paper would recommend the lowering of current
environmental standards for PM»s in the US, and that stronger measures be taken at low

concentration region.

3 Statistical approach to determine the impacts of multiple items surveyed for the slow-occurring event (diseases in
the case of this study)

15



2. Cohort study

Cohort study method is to track a group affected by suspected risk factors (exposed group)
and a group not affected by these factors (non-exposure group), or a group of people with varying
levels of exposure, for a certain period (for example, 10 years), and compare their disease
morbidity and mortality. This method enables the calculation of aforementioned relative risks.
In other words, this is to find out how people with what factors may contract what diseases,
estimating the cause and effect relationships.

For example, if 10 year tracking survey is conducted upon 100,000 heavy smokers (exposed
group) and 100,000 non-smokers (non-exposed group), and obtained mortality data on lung
cancer and coronary heart diseases, then the calculation of relative risks, which is an important
index in epidemiological causal analysis, can determine the degree of correlation between
smoking and lung cancer and coronary heart diseases. Moreover, by calculating contributing
risks, which is an important index in public health measures, it may allow us to estimate that the
highest effects of stop-smoking can be expected in coronary heart diseases rather than lung cancer.
Shown below is the example of such assumption.

For reference, the origin of the word “Cohort” is the unit of Roman army.

Table 6 Mortality of heavy smokers and non-smokers in lung cancer and coronary heart diseases

Morbidity for 100000 persons
Types of
Lung cancer Coronary heart disease
exposures
Heavy smokers 75 3000
Non-smokers 10 1000
Relative risks 75/10=1.5 3000/1000 =3
Contributed risks 75-10=165 3000 -1000 = 2000

Reference: Japan Epidemiological Academy “Basic knowledge of epidemiological terms”

http://glossary.jeaweb.jp/glossary006.html
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3. Atmospheric dispersion model

1) Definition

Atmospheric dispersion model is to quantify the atmospheric dispersion of specific materials
such as air pollutants. It means the process of specific materials in flue gas emitted from sources
such as factories and thermal power plants into atmosphere being driven by wind, diluted and
diffused in the atmosphere. ~As the atmospheric dispersion model can provide proper simulation
of chemical and material movement in the atmosphere, many processes require the use of
atmospheric dispersion model. One such process is environmental impact assessment required
for the permit applications of building and installing equipment into specific type of plants, such
as thermal power plants, which emit pollutants and hazardous materials that can affect human
health and environment. Another such process is to determine the current situation and to
quantify the effects of improvement measures of pollutions such as photochemical smog, and air
pollution, especially by PM2.5. For example, SPEEDI is an atmospheric dispersion model to
trace radioactive materials, which has become famous for its application to Fukushima No. 1 Plant
accidents in 2011.

For the forecast of atmospheric dispersion of air pollutants such as PM2.5, various
atmospheric pollution models are available.

CALPUFF (California Puff Model) used in this study is an example of such an air pollution
model. Many of these models have basic data on climate, population, etc. installed, so by
inputting the emission quantity of air pollutants and their simple properties, they can provide
estimated values, such as the atmospheric concentration of air pollutants, and the distribution of
deposits on the ground with spatial resolutions of 5 km x 5 km grid to 100 m x 100 m grid.
Furthermore, these models have useful functions to help risk assessment in practice, such as a
function to modify the model to allow the use of emission quantities and climate data, a function
to analyze calculated result and to show them on a map or graph, and user interface to help

handling and resulted data management. (Fig. 11)
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Fig. 11 Display image of a third-party interface for the CALPUFF model

Reference: breeze Co’s website: http://www.breeze-software.com/CALPUFF/

Popularly used atmospheric dispersion models include the followings in the world:
CALPUFF, CTDMPLUS (Complex Terrain Dispersion Model Plus Algorithms for
Unstable Situations), EDMS (Emissions and Dispersion Modeling System), ISC3
(Industrial Source Complex Model), etc. CALPUFF became a model described in the
Appendix A of US EPA’s Guideline on Air Quality Model, in 2000. Models developed
by Japanese research institutes include ADMER (Atmospheric Dispersion Model for
Exposure and Risk Assessment), an atmospheric dispersion model for exposure and risk
assessment developed by New Energy and Industrial Technology Development
Organization.

2) CALPUFF model’s special features

CALPUFF model is consisted of three components: 1) CALMET, three dimensional
air flow model; 2) CALPUFF, a gaussian puff dispersion model; and 3) results
postprocessing and analysis utilities POSTUTIL and CALPOST. Furthermore, it
enables the use of several sub-modules. The characteristics of CALPUFF model is to
respond to any transporting flow and diffusion of pollutants arising from the irregularity
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in air flow due to complicated topology or coastal line. Moreover, CALPUFF allows
the use of regular single air flow as well as three-dimensional irregular air flow. Also,
CALPUFF can handle secondary particulate production, or fumigation® by inner
boundary. As CALPUFF has more precise structure than the model popularly used in
Japan, it is more suitable to analyze health impacts in broader area.

¢ When emission gas suspended in upper troposphere fall out near ground where people live, it is called fumigation.
According to Ichikawa (2011), there are two types of fumigation. First type is related to so-called inversion layer.
When inversion layer develops with radiative cooling during the night, emission gas trapped in the inversion layer does
not disperse, maintaining higher concentration. ~ After sun rises, and the ground warms, inversion layer collapses and
greater convection enhances mixing of gas. When such mixing layer reaches where emission gasses are, highly
concentrated emission gas can fall to the ground at once. Second type is fumigation by thermal inner boundary in
atmosphere.  For example, when sea wind blow to inland, some areas have greater mixing due to sunshine causing
greater convection from the coastline. This is called thermal inner boundary. In Japan, large plants with high chimneys
tend to be located on the coast line. Gas emitted from tall chimneys on the coast may have small disturbance when
emitted. This means that emission gas do not diffuse well causing greater concentration. One such concentrated

emission gas enter inner boundary layers of active mixing, such emission gas is likely to fall to the ground at once
causing air pollution.
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%5, F7-. Dietal. (2017) Tik, RAEFLDOTRIET AV E2FA L, FAESRE OB ERZIPT—

13



R (BEEE) cESE AR FRIE THHPMesB LU Y VOFEHE LR L TV 5,
ZO2ODKRIBEEMHEIIHTHRBEBOLT Y R BT B IChimo Tidk. AOFFHERRE
BIUOAF 474 F CKEICRIT 5 EFEEMNTERER) SHEEOFE, #ilkL ~L D%
BTEDLNDS T v 7 AFINF— FEFTASZ AT, PMysh10pg/m®, 4 2310 ppb, F4L
FAEI L7356 OHEROBMEL WS L T\ 5,

FOER, PMasDBEIT10pug m DA, A > OFAIT10 ppbDHEIMZEV, 2 TORED
FLEREBZENEFNTI% (5%EFEXM TLINGT.S) | 1.1% (95%EHEXH TLONH12) EFL
To (HXERTRT &, TREN1.073£1.011) , PMasTiEIR2pug/mP A - FLATORE, & T
XS0 ppbLA FOBREIZIBE LB A, FLEEO LFIT, FnFNI13.6% (95%EHRXM TI3.120256
14.1) | 1.0% (95%{EFXFET0.9MH61.1) Th-oT,

PM2sDIE, BYE, BA. AT 4 7 A FZREREOHTHERD . OB D A~ DI ER
L K&, Tl AT AT TOEZHETIE, PMasB L UOA Y BT 2B TOXKET
DOBREREAEL TRZEKEE CORZBICBOTHEREB2 RTHAMBLRIEMIRENTZ, ZOF
i3, FICBREEAEN~A ) VT4 L LA BIMMEFEEICBWTIRLEETH o,

INLDHRLIY, EHEELIIFROKEIZBIT 2PM, SRIBEEMED 5| & TUF KR B O Hiulk
R AREDOHILA EERE LTINS,

S FFHIORBTRET DAV b (RHEOHRIIHEA) (CH LT, AELEROERONIEET D
DEFRD - DOREFHFIE,

14



2. ak—FRE

RERR T, RILE LTEZ N2 EREZFOEMH (BERH) L QVWEE GHRER) %,
HH—EHE (B : 10 F£/) BB L, MEOKROBBREIIFLCTEL LR TILNETHY .
ZHIC X > CRTH OMIMEREZ RO D Z LN TE D, Thbb, EDLIRBEREZFOER, L

D& REBIBELRLTVAEERAL, »POEREROMEELZIT) ZLRTED,

leE 2, ROITRLICE Sic, RERES (RER) LIFRER CGERER) OF~107
AZDNWT 10 FRBHRAEZITV. FidA L EBRMEGCREIZETIHCRER/L LT D, £
T RFOERNSIT TEELRBEETHOMMEREEN T Z L2k Y, A X UHEEMR
PELRE ST L OBEARV LW ) ZEBHIAT S, £, ARBEARTEERBETHS
HFEEREERTHZLICE Y FRCHTIEEOURBR LHFEND O XA LD b
HEBRMELCRETHS Z & bR SN0 T2, (RBOHIZ TIZRT,

¥, FAwR— ME FERRCE, o< BREROERDOBEMAZRT,

& 6. KEBRES & FREEOMAA L L UEBRMEDEREDNTELTE

10 AN T HEEE
BEOER fiiAtA EEARMEDIRS
RNEBYEE 75 3000
FERRIEE 10 1000
FEfE R 75/10 =7.5 3000/1000 =3
5 fakk 75-10=65 3000 -1000 = 2000

s BAREFS [EFREO ST
http://glossary.jeaweb.jp/glossary006.html

15



3. K&KWLEET L

1) E&E

REILHE T /Vid, RRIBRWE 2 L ORFEME D KRIILB ORI EZ EEHICHALNICT S
ETNTH D, RRILRE 1T, THRKNRBREROMEZER Eh b RRPICHKRE SN AEDE S
BUHTARBIZ L > TEEINT, eV ADFEETNIHEDERFRIN N LHEHEF %
LTS P o2 2B%KT D, BE. KNREFREOANERPREICHEL RITTIHEY
H-fERMEROIFET 7 FORBIFFTHBEREICBIT ARELETHES., KbFEREY S -
PMas IZfAER &N 2 KRG RHMBORIUNECZ O EMN R NROERMNFIMIZIZ. Zh b0
HOKKIP TOEBLBEIIC I 2 b — M ARKILHET VOFANRLE - RAIK L2 T
W5a, BIZIE, 2011 FOREFE—REFHTHEALR>TBAHAEYVEOEBRET L TH D
SPEEDI & KRILEET L D—DTH D,

PMys 72 EDORKIGFEME D RKTILBEEAS O FRENCE L TE, kxR RRIBRET AR Y,
A9 THAV/Z CALPUFF (California Puff Model) €7V HFD—2THdD, TNHLDET LD
£ < T [, AQEOE#ET — 2 BNE SN TE Y, KRGEME OB E & fHE 2%
ANT—F L LTRETI. KRIGEHHEORKITIRE L HR~DILEED % | FEM/2ZE
AR (Skm 225 100m U HHEF) THETDHIENTEDLICR-TWD, -, HHE
RRBT —F ZFREICEZ DB T 6. sHERBREZMBIT LIERS Y 7 71k RAT 55
B, BECRROEHEMIT Ao —F — AL F—T A RigY | EHETY AVFEZEIT & X
WCFIT LR ER R ERL TS ([’ 1) .

K11. avEFa1—4—@EETO CALPUFF ETILDOBRENRRIILDA A —2

High : breeze ¥ HP (http://www breeze-software.com/CALPUFE/) X 9

16



— AN E DN TV S RRILRET /L& LTI, 5 Tk, CALPUFF, CTDMPLUS (Complex
Terrain Dispersion Model Plus Algorithms for Unstable Situations), EDMS (Emissions and Dispersion
Modeling System) . ISC3 (Industrial Source Complex Model) 72 & 23&% %5, CALPUFF i 2000 EiZ
KEREGER OHELE T 5 /L (Guideline on Air Quality Model > Appendix A IZFE#E S L HET L)
Lo TWD, BADOUERER EBREKR LIcET Ve LTI, EXFERBIEANEERINRS
MEFOERE - VA7 FHMKXKRIZEHET L ThH D ADMER (Atmospheric Dispersion Model for
Exposure and Risk Assessment) 72 &334 5,

2) CALPUFF ®ETIL DO

CALPUFF E7 /Wi, 1) ZRFTRFET VT D CALMET, 2) 7 ARNRT OBFRILHET
JLTd 5 CALPUFF, 3) K DOfENTET V" Cdh D POSTUTIL & CALPOST, @ 3 DD a3 FR—F
Y MIE o THR I, 6N OO TEY 2 — LV OFEFADBFEE L 72> TV 5, CALPUFF
ETNVORRIT, IBEEPEEEMIIC L D IHEEF RI]MEIIC XL 2758 E OB - SEBIS S
THIENWAREMRZETHD, £/, CALPUFF ~DANEHE L D RMETNVICIE, =Tk
EHERIFOM, EFOEIMEANVDIZLHTED, &6I2, AET AL, LERISIZES 2K
BFARCHETERBICE D 723/ = a2 l5 2 eNTEERY, BATHRMIED
ATNWBETVICHE LTI D FEHRBEEZ LTS, LIRICBIT 2 BERFEEO DT
BWLTW3,

¢ EZEDROEES AVBAOEDHEEICE LT AZ 27234~ 3 (fumigation) &FES, T
Q011) I2&kdé, 7237 —vailid200847Bb5, E—DFA 7, Wb WEEICEE
T3, ®KHE., BHEHIC L > THEEPRET DI L, FREOFOHT RIS E VIEE LAWY, RE
EEWEFILRD, ABATKENAES &, #EE< BENL 2o THEBARE L, ICL 2IREN
AR D, RN TREDOEARBEPHENADMEBE TET S &, LENLBOVIES AN —KICHIEL
KILHELTL B, EZOFA 7T, BHARRNTERBICL2 72357 —Ta vy Thd, flxiE, BANK
WTWH e &, BRICK > THERRD OXHE, BREDBARBEENEET D, INEBNRNTRERRE &
MES, BATHBRIIKRERIERENRH> T, BVERERES THHHEENRE, BREOEWERENL
DHEH R 1T, BN L BB TEEAO/NEREROEESZ TS, 20, HEVEHLEVOTR
WHEHTADEETH D, FLT, BOBEVABNEERBOFIZAD L, ZIXRAVBRAZERTHS
=, ZOBEL-RICHAE L TE TARBERA5I 28T,

17



S5 3K

I — 2011. KRB EEET R AV N, SEAKREHRTY v —F 1, 22-1/4.
https:/www.rikou.ryukoku.ac.jp/images/journal58/RJ58-04. PDF

EHERIED 2016, KRFHIMIFRDEORYBRZEFECICKIETTHEZFMRICKITD
WREE LR EOTEICET 2 RMML U a— & A T —, KKRBESSEE £ 51
B 6 5, p.245-256.

hitps://www.jstage.jst.go.jp/article/taiki/51/6/51_245/ pdf
HEMERE 2016. BB OBIRADREFRORMERIZNA U R, 2T, Vol.55, No.1, p.64-
68.

https://www.jstage.jst.co.jp/article/safety/55/1/55 64/ article/-char/ja
JICA FFF — 4 2013. RRFRMEIH Y I = L—> 3 VEF L OMEM, 2013/10/22.
http://open_jicareport.jica.go.jp/pdf/12249827 03.pdf
AT, 7Y 2016 FEARKHREFIC L 5 KRS L ORBE~ORE~ K
HFEIVTFTLERR - EETYTOHFr—RRAZT 4~

http://www.kikonet.org/wp/wp-content/uploads/2016/05/Japan-case-study JP finald.pdf

AMAP/UNEDP. 2015. Global Mercury Modelling: Update of Modelling Results in the Global Mercury
Assessment 2013. Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP
Chemicals Branch, Geneva, Switzerland.

Anenberg SC et al. 2010. An estimate of the global burden of anthropogenic ozone and fine particulate
matter on premature human mortality using atmospheric modeling. Environ. Health Perspect.

2010, 118 (9), 1189. https://ehp.niehs.nih.gov/0901220/

Dadvand et al. 2013. Maternal Exposure to Particulate Air Pollution and Term Birth Weight: A Multi-
Country Evaluation of Effect and Heterogeneity, Environmental Health Perspectives.

http://ehp.niehs.nih.cov/pdf-files/2013/Feb/ehp.1205575.pdf

Di et al. 2017. Air Pollution and Mortality in the Medicare Population, The New England Journal of
Medicine, Vol. 376, No.26, pp.2513-2522, June 29, 2017.

htip://www.neim.org/doi/full/ 10. 1056/ NEJMoal 702747

Goto et al. 2017. Estimation of excess mortality due to long-term exposure to PM; s in Japan using a high-
resolution model for present and future scenarios, Atmospheric Environment, Volume
140, September 2016, Pages 320-332.

https://doi.ore/10.1016/j.atmosenv.2016.06.015

18



hitps://www.sciencedirect.com/science/article/pii/S1352231016304484

Koplitz et al. 2017. Burden of Disease from Rising Coal-Fired Power Plant Emissions in Southeast Asia.
Environmental Science & Technology.

hitp://dx.doi.org/10.1021/acs.est.6b0373 1

Krewski et al. 2009. Extended follow-up and spatial analysis of the American Cancer Society study
linking particulate air pollution and mortality. Health Effects Institute.
https://www healtheffects.org/system/files/Krewskil40.pdf

Mehta et al. 2011. Ambient particulate air pollution and acute lower respiratory infections: a systematic
review and implications for estimating the global burden of disease. Air Qual. Atmos. Health.
DOI 10.1007/511869-011-0146-3.

Mills et al. 2016. Distinguishing the associations between daily mortality and hospital admissions and
nitrogen dioxide from those of particulate matter: a systematic review and meta-analysis. BMJ
Open 6:¢010751.
http://dx.doi.org/10.1136/bmjopen-2015-010751

Lancet 2017. The Lancet Countdown on health and climate change: from 25 years of inaction to a global
transformation for public health.

hitp://www.thelancet.com/pdfs/journals/lancet/P11S0140-6736(17)32464-9.pdf

Stamper Vicki et al. 2012. Poisoning the Great Lakes: Mercury Emissions from Coal-fired Power Plants
in the Great Lakes Region, NRDC, June 2012.

https://www.nrdc.ore/sites/default/files/poisonine-the-ereat-lakes.pdf

Swain et al. 1992. Increasing rates of atmospheric mercury deposition in mid-continental North America.
Science 257: 784-787.
WHO 2013. Health risks of air pollution in Europe-HRAPIE project.

http.//www.euro.who.int/ _data/assets/pdf file/0006/238956/Health_risks air_pollution HRAPI

E project.pdf?ua=1

WHO 2015. Global Health Estimates, Estimates for 2000-2015.

http://www.who.int/healthinfo/global burden disease/en/

19



PALE (2 B

TBERER~ 7] KEERYI 2L —2a b TFHESh3RERE

FRRER~ v 7] OFEMIT : hitps://act.greenpeace.org/page/21550/petition/1

e L e FRFETEH (A FAELRRBXRERS T
PRTEORRINERIL | B4 Toros | —miems | #7> | aff | o (PS8R A M)
Yy A RER FIE 143 25 7 175 175
P REKET K IR BT E 76 26 6 109 109
BB B 82 19 7 108 108
BRE K IR ERT T 77 20 5 102 102
BRAB X #ER #ZE)N| 65 18 5 88 88
BT RAX—t 7 — i 53 28 3 84 84

(BEFATH) EE 26 5 5 36 36

(REFT4 W) R 25 11 3 39 39
REXNEEF B 58 11 4 73 73
R ERT R 47 5 9 60 60
P D IR BAT n 43 7 6 56 56
YRR ERT N 42 7 4 53 53
R XDFEEN i 36 10 2 48 48

(BEFATH) —E 30 12 2 44 44
BERE/SA A~ R « ARIBLERER LA 36 4 3 43 43

(BERFT4TH) =1l 36 2 4 42 42
—REREF SR 33 5 5 42 42
KETHRNLE—F L & — (& L 29 8 3 40 40
w EARET I ALK I R ERT Kk 26 5 2 32 32
il BT — 25— g v IR 15 10 2 28 28
FERRER BiE 21 3 3 27 27

(BEF4ATH) T 14 12 1 27 27
DKF R H A AR ERT BE 21 3 2 26 26
ik ¥R ERT i 17 2 6 25 25
YRR BT = 19 2 3 24 24
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BEK )R EBRT & ] 10 4 1 16 16
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WhE LRAF——7 25 9 3 2 14 14
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